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Compulsory Part

1. Show that the center of a direct product is the direct product of the centers, i.e.

Z(G1 ×G2 × · · · ×Gn) = Z(G1)× Z(G2)× · · · × Z(Gn).

Deduce that a direct product of groups is abelian if and only if each of the factors is
abelian.

Proof. By induction, we only need to prove it for n = 2. Let (z1, z2) ∈ Z(G1 × G2),
we have (z1, z2)(g1, g2) = (g1, g2)(z1, z2) ⇔ (z1g1, z2g2) = (g1z1, g2z2) ⇔ z1g1 =
g1z1, z2g2 = g2z2, ∀g1, g2 ∈ G2, G2 respectively. which means that Z(G1 × G2) ≃
Z(G1)× Z(G2).

For the last part, let G = G1 × ...×Gn. Then G is abelian ⇐⇒ G = Z(G) ⇐⇒ Gi =
Z(Gi) for each i ⇐⇒ each Gi is abelian.

2. Show that if G is nonabelian, then the quotient group G/Z(G) is not cyclic.

[Hint: Show the equivalent contrapositive, namely, that if G/Z(G) is cyclic then G is
abelian (and hence Z(G) = G).]

Proof. Suppose that G/Z(G) = ⟨h⟩ for some h ∈ G, where h = hZ(G). Then for any
g ∈ G, g = hi for some i ∈ Z. Then g = hic for some c ∈ Z(G). Then for any g′ ∈ G,
g′ = hjc′ for some j ∈ Z, c′ ∈ Z(G). Then gg′ = hichjc′ = hi+jcc′ = hjc′hic = g′g
because c, c′ ∈ Z(G). Since g, g′ were two arbitrary elements in G, it follows that G is
abelian. Therefore, nonabelian G can not have G/Z(G) cyclic.

3. Using the preceding question, show that a nonabelian group G of order pq where p and q
are primes has a trivial center.

Proof. Let G be a nonabelian group of order pq, where p and q are primes (p, q may or
may not be distinct). Since G is not abelian, Z(G) ̸= G. Then |G/Z(G)| > 1. Since
|G/Z(G)| divides |G| = pq, |G/Z(G)| = p, q or pq. By question 8, G/Z(G) is not cyclic,
hence not of prime order. Then |G/Z(G)| = pq, and so |Z(G)| = 1. It follows that the
center Z(G) is trivial.

4. Let N be a normal subgroup of G and let H be any subgroup of G. Let HN = {hn | h ∈
H,n ∈ N}. Show that HN is a subgroup of G, and is the smallest subgroup containing
both N and H .
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Proof. Let N be a normal subgroup of G and let H be any subgroup of G. Then e ∈ N
and e ∈ H . Therefore, e = ee ∈ HN . Take hn, h′n′ ∈ HN , where h, h′ ∈ H , and
n, n′ ∈ N . Then hn(h′n′)−1 = hnn′−1h′−1. Since N ◁G, h′nn′−1h′−1 ∈ N . Therefore,
h′nn′−1h′−1 = n′′ for some n′′ ∈ N . Then nn′−1h′−1 = h′−1n′′, and hn(h′n′)−1 =
hn(n′)−1(h′)−1 = hh′−1n′′ ∈ HN . It follows that HN is a subgroup of G.

Note that H ⊆ HN and N ⊆ HN . Clearly, any subgroup containing both N and H
will also contain HN . Therefore, HN is the smallest subgroup containing both N and
H .

5. Show directly from the definition of a normal subgroup that if H and N are subgroups of
a group G, and N is normal in G, then H ∩N is normal in H .

Proof. (In the following < means be a subgroup of, we do not distinguish < and ≤.)

Let H < G,N ◁ G. Then H ∩ N is a subgroup of G contained in H , so H ∩ N < H .
For any h ∈ H , n ∈ H ∩ N , hnh−1 ∈ N because N ◁ G. Also, h, n ∈ H implies that
hnh−1 ∈ H . Therefore, hnh−1 ∈ H ∩N , and so H ∩N ◁H .

6. Let H,K, and L be normal subgroups of G with H < K < L. Let A = G/H,B = K/H ,
and C = L/H .

(a) Show that B and C are normal subgroups of A, and B < C.

(b) To what quotient group of G is (A/B)/(C/B) isomorphic?

Proof. (a) Let H,K, and L be normal subgroups of G with H < K < L. Let ϕ : G →
G/H be the natural projection: ϕ(g) = gH for any g ∈ G. Then A = ϕ(G), B =
ϕ(K), C = ϕ(L). Since ϕ is surjective, it preserves normal groups, therefore, B◁G, and
C ◁ G. Since K < L, B = ϕ(K) ⊆ ϕ(L) = C. Since B,C are both subgroups of A,
B < C.

(b) By the third isomorphism theorem, (A/B)/(C/B) ≃ A/C = (G/H)/(L/H) ≃
G/L.
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Optional Part

1. Let F be a field, and n ∈ Z>0.

(a) Show that SLn(F ) is a normal subgroup in GLn(F ).

(b) When F is a finite field, show that [GLn(F ) : SLn(F )] = |F | − 1.

Proof. (a) Note that SLn(F ) is the kernel of the determinant map det : GLn(F ) → F×.
Therefore, SLn(F ) is a normal subgroup in GLn(F ).

(b) The map det in (a) is surjective: For any λ ∈ F×, det(diag(λ, 1, 1, ..., 1)) = λ.
Therefore, by the first isomorphism theorem, GLn(F )/SLn(F ) ≃ F×. Therefore,
[GLn(F ) : SLn(F )] = |F | − 1.

2. Let F = FA be the free group on two generators A = {a, b}. Show that the normal
subgroup generated by the single commutator aba−1b−1 is the commutator of F .

3. Show that the converse to the Theorem of Lagrange holds for an abelian group, namely,
if G is a finite abelian group and d | |G|, then there exists a subgroup of G of order d.

Proof. Let G be a finite abelian group and d | |G|. We may assume that |G| ≥ 2. Then
G ≃ Zd1 ⊕ ...Zdk , where k ≥ 1, d1|d2|...|dk, and d1 ≥ 2. We do induction on k.

When k = 1, G is cyclic, and G has a subgroup of order d for each d | |G|.

Suppose k ≥ 2. Let c = gcd(d, dk). Then gcd(d
c
, dk

c
) = 1. Since d | |G|, d

c
| |G|

c
= |G|

dk
· dk

c
.

Then d
c
| |G|

dk
. By induction hypothesis, c|dk implies that Zdk has a subgroup H2 of order

c, and d
c
| |G|

dk
implies that Zd1 ⊕ ...Zdk−1

has a subgroup H1 of order d
c
. Therefore,

G ≃ Zd1 ⊕ ...Zdk−1
⊕ Zdk has a subgroup H1 ⊕H2 of degree d.

4. Prove that An is simple for n ≥ 5, following the steps and hints given.

(a) Show that An contains every 3-cycle if n ≥ 3.

(b) Show that An is generated by the 3-cycles for n ≥ 3 [Hint: Note that (a, b)(c, d) =
(a, c, b)(a, c, d) and (a, c)(a, b) = (a, b, c).]

(c) Let r and s be fixed elements of {1, 2, · · · , n} for n ≥ 3. Show that An is generated
by the n “special” 3-cycles of the form (r, s, i) for 1 ≤ i ≤ n. [Hint: Show every
3-cycle is the product of “special” 3-cycles by computing

(r, s, i)2, (r, s, j)(r, s, i)2, (r, s, j)2(r, s, i),

and
(r, s, i)2(r, s, k)(r, s, j)2(r, s, i).

Observe that these products give all possible types of 3-cycles.]
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(d) Let N be a normal subgroup of An for n ≥ 3. Show that if N contains a 3-cycle,
then N = An. [Hint: Show that (r, s, i) ∈ N implies that (r, s, j) ∈ N for j =
1, 2, · · · , n by computing

((r, s)(i, j))(r, s, i)2((r, s)(i, j))−1.]

(e) Let N be a nontrivial normal subgroup of An for n ≥ 5. Show that one of the
following cases must hold, and conclude in each case that N = An.

Case I N contains a 3-cycle.
Case II N contains a product of disjoint cycles, at least one of which has length greater

than 3. [Hint: Suppose N contains the disjoint product σ = µ(a1, a2, · · · , ar).
Show σ−1(a1, a2, a3)σ(a1, a2, a3)

−1 is in N , and compute it.]
Case III N contains a disjoint product of the form σ = µ(a4, a5, a6)(a1, a2, a3). [Hint:

Show σ−1(a1, a2, a4)σ(a1, a2, a4)
−1 is in N , and compute it.]

Case IV N contains a disjoint product of the form σ = µ(a1, a2, a3) where µ is a product
of disjoint 2-cycles. [Hint: Show σ2 ∈ N and compute it.]

Case V N contains a disjoint product σ of the form σ = µ(a3, a4)(a1, a2), where µ is a
product of an even number of disjoint 2-cycles.
[Hint: Show that σ−1(a1, a2, a3)σ(a1, a2, a3)

−1 is in N , and compute it to de-
duce that α = (a2, a4)(a1, a3) is in N . Using n ≥ 5 for the first time, find
i ̸= a1, a2, a3, a4 in {1, 2, · · · , n}. Let β = (a1, a3, i). Show that β−1αβα ∈ N ,
and compute it.]

Proof. See p202 of Artin’s Algebra.


