THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 3030 Abstract Algebra 2023-24
 Homework 4 Answer

Compulsory Part

1. Show that the center of a direct product is the direct product of the centers, i.e.

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.

Proof. By induction, we only need to prove it for $n=2$. Let $\left(z_{1}, z_{2}\right) \in Z\left(G_{1} \times G_{2}\right)$, we have $\left(z_{1}, z_{2}\right)\left(g_{1}, g_{2}\right)=\left(g_{1}, g_{2}\right)\left(z_{1}, z_{2}\right) \Leftrightarrow\left(z_{1} g_{1}, z_{2} g_{2}\right)=\left(g_{1} z_{1}, g_{2} z_{2}\right) \Leftrightarrow z_{1} g_{1}=$ $g_{1} z_{1}, z_{2} g_{2}=g_{2} z_{2}, \forall g_{1}, g_{2} \in G_{2}, G_{2}$ respectively. which means that $Z\left(G_{1} \times G_{2}\right) \simeq$ $Z\left(G_{1}\right) \times Z\left(G_{2}\right)$.
For the last part, let $G=G_{1} \times \ldots \times G_{n}$. Then G is abelian $\Longleftrightarrow G=Z(G) \Longleftrightarrow G_{i}=$ $Z\left(G_{i}\right)$ for each $i \Longleftrightarrow$ each G_{i} is abelian.
2. Show that if G is nonabelian, then the quotient group $G / Z(G)$ is not cyclic.
[Hint: Show the equivalent contrapositive, namely, that if $G / Z(G)$ is cyclic then G is abelian (and hence $Z(G)=G$).]

Proof. Suppose that $G / Z(G)=\langle\bar{h}\rangle$ for some $h \in G$, where $\bar{h}=h Z(G)$. Then for any $g \in G, \bar{g}=\overline{h^{i}}$ for some $i \in \mathbb{Z}$. Then $g=h^{i} c$ for some $c \in Z(G)$. Then for any $g^{\prime} \in G$, $g^{\prime}=h^{j} c^{\prime}$ for some $j \in \mathbb{Z}, c^{\prime} \in Z(G)$. Then $g g^{\prime}=h^{i} c h^{j} c^{\prime}=h^{i+j} c c^{\prime}=h^{j} c^{\prime} h^{i} c=g^{\prime} g$ because $c, c^{\prime} \in Z(G)$. Since g, g^{\prime} were two arbitrary elements in G, it follows that G is abelian. Therefore, nonabelian G can not have $G / Z(G)$ cyclic.
3. Using the preceding question, show that a nonabelian group G of order $p q$ where p and q are primes has a trivial center.

Proof. Let G be a nonabelian group of order $p q$, where p and q are primes (p, q may or may not be distinct). Since G is not abelian, $Z(G) \neq G$. Then $|G / Z(G)|>1$. Since $|G / Z(G)|$ divides $|G|=p q,|G / Z(G)|=p, q$ or $p q$. By question $8, G / Z(G)$ is not cyclic, hence not of prime order. Then $|G / Z(G)|=p q$, and so $|Z(G)|=1$. It follows that the center $Z(G)$ is trivial.
4. Let N be a normal subgroup of G and let H be any subgroup of G. Let $H N=\{h n \mid h \in$ $H, n \in N\}$. Show that $H N$ is a subgroup of G, and is the smallest subgroup containing both N and H.

Proof. Let N be a normal subgroup of G and let H be any subgroup of G. Then $e \in N$ and $e \in H$. Therefore, $e=e e \in H N$. Take $h n, h^{\prime} n^{\prime} \in H N$, where $h, h^{\prime} \in H$, and $n, n^{\prime} \in N$. Then $h n\left(h^{\prime} n^{\prime}\right)^{-1}=h n n^{\prime-1} h^{-1}$. Since $N \triangleleft G, h^{\prime} n n^{\prime-1} h^{\prime-1} \in N$. Therefore, $h^{\prime} n n^{\prime-1} h^{\prime-1}=n^{\prime \prime}$ for some $n^{\prime \prime} \in N$. Then $n n^{\prime-1} h^{\prime-1}=h^{\prime-1} n^{\prime \prime}$, and $h n\left(h^{\prime} n^{\prime}\right)^{-1}=$ $h n\left(n^{\prime}\right)^{-1}\left(h^{\prime}\right)^{-1}=h h^{-1} n^{\prime \prime} \in H N$. It follows that $H N$ is a subgroup of G.
Note that $H \subseteq H N$ and $N \subseteq H N$. Clearly, any subgroup containing both N and H will also contain $H N$. Therefore, $H N$ is the smallest subgroup containing both N and H.
5. Show directly from the definition of a normal subgroup that if H and N are subgroups of a group G, and N is normal in G, then $H \cap N$ is normal in H.

Proof. (In the following $<$ means be a subgroup of, we do not distinguish $<$ and \leq.)
Let $H<G, N \triangleleft G$. Then $H \cap N$ is a subgroup of G contained in H, so $H \cap N<H$. For any $h \in H, n \in H \cap N, h n h^{-1} \in N$ because $N \triangleleft G$. Also, $h, n \in H$ implies that $h n h^{-1} \in H$. Therefore, $h n h^{-1} \in H \cap N$, and so $H \cap N \triangleleft H$.
6. Let H, K, and L be normal subgroups of G with $H<K<L$. Let $A=G / H, B=K / H$, and $C=L / H$.
(a) Show that B and C are normal subgroups of A, and $B<C$.
(b) To what quotient group of G is $(A / B) /(C / B)$ isomorphic?

Proof. (a) Let H, K, and L be normal subgroups of G with $H<K<L$. Let $\phi: G \rightarrow$ G / H be the natural projection: $\phi(g)=g H$ for any $g \in G$. Then $A=\phi(G), B=$ $\phi(K), C=\phi(L)$. Since ϕ is surjective, it preserves normal groups, therefore, $B \triangleleft G$, and $C \triangleleft G$. Since $K<L, B=\phi(K) \subseteq \phi(L)=C$. Since B, C are both subgroups of A, $B<C$.
(b) By the third isomorphism theorem, $(A / B) /(C / B) \simeq A / C=(G / H) /(L / H) \simeq$ G / L.

Optional Part

1. Let F be a field, and $n \in \mathbb{Z}_{>0}$.
(a) Show that $S L_{n}(F)$ is a normal subgroup in $G L_{n}(F)$.
(b) When F is a finite field, show that $\left[G L_{n}(F): S L_{n}(F)\right]=|F|-1$.

Proof. (a) Note that $\mathrm{SL}_{n}(F)$ is the kernel of the determinant map det: $\mathrm{GL}_{n}(F) \rightarrow F^{\times}$. Therefore, $\mathrm{SL}_{n}(F)$ is a normal subgroup in $\mathrm{GL}_{n}(F)$.
(b) The map det in (a) is surjective: For any $\lambda \in F^{\times}, \operatorname{det}(\operatorname{diag}(\lambda, 1,1, \ldots, 1))=\lambda$. Therefore, by the first isomorphism theorem, $\mathrm{GL}_{n}(F) / \mathrm{SL}_{n}(F) \simeq F^{\times}$. Therefore, $\left[\mathrm{GL}_{n}(F): \mathrm{SL}_{n}(F)\right]=|F|-1$.
2. Let $F=F^{A}$ be the free group on two generators $A=\{a, b\}$. Show that the normal subgroup generated by the single commutator $a b a^{-1} b^{-1}$ is the commutator of F.
3. Show that the converse to the Theorem of Lagrange holds for an abelian group, namely, if G is a finite abelian group and $d||G|$, then there exists a subgroup of G of order d.

Proof. Let G be a finite abelian group and $d||G|$. We may assume that $| G \mid \geq 2$. Then $G \simeq \mathbb{Z}_{d_{1}} \oplus \ldots \mathbb{Z}_{d_{k}}$, where $k \geq 1, d_{1}\left|d_{2}\right| \ldots \mid d_{k}$, and $d_{1} \geq 2$. We do induction on k.
When $k=1, G$ is cyclic, and G has a subgroup of order d for each $d||G|$.
Suppose $k \geq 2$. Let $c=\operatorname{gcd}\left(d, d_{k}\right)$. Then $\operatorname{gcd}\left(\frac{d}{c}, \frac{d_{k}}{c}\right)=1$. Since $d\left||G|, \frac{d}{c}\right| \frac{|G|}{c}=\frac{|G|}{d_{k}} \cdot \frac{d_{k}}{c}$. Then $\frac{d}{c} \left\lvert\, \frac{|G|}{d_{k}}\right.$. By induction hypothesis, $c \mid d_{k}$ implies that $\mathbb{Z}_{d_{k}}$ has a subgroup H_{2} of order c, and $\frac{d}{c} \left\lvert\, \frac{|G|}{d_{k}}\right.$ implies that $\mathbb{Z}_{d_{1}} \oplus \ldots \mathbb{Z}_{d_{k-1}}$ has a subgroup H_{1} of order $\frac{d}{c}$. Therefore, $G \simeq \mathbb{Z}_{d_{1}} \oplus \ldots \mathbb{Z}_{d_{k-1}} \oplus \mathbb{Z}_{d_{k}}$ has a subgroup $H_{1} \oplus H_{2}$ of degree d.
4. Prove that A_{n} is simple for $n \geq 5$, following the steps and hints given.
(a) Show that A_{n} contains every 3 -cycle if $n \geq 3$.
(b) Show that A_{n} is generated by the 3 -cycles for $n \geq 3$ [Hint: Note that $(a, b)(c, d)=$ $(a, c, b)(a, c, d)$ and $(a, c)(a, b)=(a, b, c)$.]
(c) Let r and s be fixed elements of $\{1,2, \cdots, n\}$ for $n \geq 3$. Show that A_{n} is generated by the n "special" 3 -cycles of the form (r, s, i) for $1 \leq i \leq n$. [Hint: Show every 3 -cycle is the product of "special" 3 -cycles by computing

$$
(r, s, i)^{2},(r, s, j)(r, s, i)^{2},(r, s, j)^{2}(r, s, i)
$$

and

$$
(r, s, i)^{2}(r, s, k)(r, s, j)^{2}(r, s, i)
$$

Observe that these products give all possible types of 3-cycles.]
(d) Let N be a normal subgroup of A_{n} for $n \geq 3$. Show that if N contains a 3 -cycle, then $N=A_{n}$. [Hint: Show that $(r, s, i) \in N$ implies that $(r, s, j) \in N$ for $j=$ $1,2, \cdots, n$ by computing

$$
\left.((r, s)(i, j))(r, s, i)^{2}((r, s)(i, j))^{-1} .\right]
$$

(e) Let N be a nontrivial normal subgroup of A_{n} for $n \geq 5$. Show that one of the following cases must hold, and conclude in each case that $N=A_{n}$.
Case I N contains a 3 -cycle.
Case II N contains a product of disjoint cycles, at least one of which has length greater than 3. [Hint: Suppose N contains the disjoint product $\sigma=\mu\left(a_{1}, a_{2}, \cdots, a_{r}\right)$. Show $\sigma^{-1}\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1}$ is in N, and compute it.]
Case III N contains a disjoint product of the form $\sigma=\mu\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)$. [Hint: Show $\sigma^{-1}\left(a_{1}, a_{2}, a_{4}\right) \sigma\left(a_{1}, a_{2}, a_{4}\right)^{-1}$ is in N, and compute it.]
Case IV N contains a disjoint product of the form $\sigma=\mu\left(a_{1}, a_{2}, a_{3}\right)$ where μ is a product of disjoint 2 -cycles. [Hint: Show $\sigma^{2} \in N$ and compute it.]
Case V N contains a disjoint product σ of the form $\sigma=\mu\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}\right)$, where μ is a product of an even number of disjoint 2 -cycles.
[Hint: Show that $\sigma^{-1}\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1}$ is in N, and compute it to deduce that $\alpha=\left(a_{2}, a_{4}\right)\left(a_{1}, a_{3}\right)$ is in N. Using $n \geq 5$ for the first time, find $i \neq a_{1}, a_{2}, a_{3}, a_{4}$ in $\{1,2, \cdots, n\}$. Let $\beta=\left(a_{1}, a_{3}, i\right)$. Show that $\beta^{-1} \alpha \beta \alpha \in N$, and compute it.]

Proof. See p202 of Artin's Algebra.

